Chapter 9

Flow over Immersed
Bodies




e We consider flows over
bodies that are immersed in
a fluid and the flows are
termed external flows.

e We are interested in the fluid §
force (lift and drag) over the
bodies. For example,
correct design of cars,
trucks, ships, and airplanes,
etc. can greatly decrease
the fuel consumption and
Improve the handling
characteristics of the vehicle.




9.1 General External Flow Characteristics EE:
o

e A body immersed in a moving fluid experiences a <
resultant force due to the interaction between the body e e
and the fluid surrounding It.

e ODbject and flow relation:
stationary air with moving object or
flowing air with stationary object

e Flow classification:
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Figure 9.2
Flow classification: (a) two-dimensional, (b) axisymmetric, (c) three-dimensional.

e Body shape:
Streamlined bodies or blunt bodies



9.1.1 Lift and Drag Concepts EE:
e \When any body moves through a fluid, an interaction S o’
between the body and the fluid occurs o o

e This can be described Iin terms of the stresses-wall
shear stresses due to viscous effect and normal
stresses due to the pressure P p<0

Y Y N N W —
Pressure

distribution p>0

e Drag, D @
the resultant force in the Shear siress
. . —_ — ~— _ , distribution
direction of the upstream v . <
velocity N e S
o Lift, L

&
¥\

the resultant force normal to

the upstream velocity U C/,f\

(c)




Resultant force--lift and drag .

U, e \ dF, = (pdA)cosé + (z,dA)sin @
—~ and

£\ dF, =—(pdA)sin & +(z,,dA)cosd

The net x and y components of the force on the object are,
D:deX =j pcosdA+J'rWsin GdA
L :_dey :—j psin 6’dA+j'rW cosdA
e Nondimensional lift coeff. C, and drag coeff. C,

_ | A: charateristic area, frontal area or
1 pU®A

- 1 pU®A planform area?

Note: When C, or C, =1, then D or L equals the dynamic pressure on A.



Velocity and pressure distribution around an air foil

e
¥V (m/s)

1.2

At a 7° angle of attack the boundary layer
separates from the upper surface of this
airfoil, whereas the boundary layer

- 10

0.8
remains attached to the lower surface.

Low velocities (top panel) are evident

0.6

0.4

over much of the upper surface. The
corresponding pressure distribution
(bottom panel) 1s expressed using the
pressure coefficient Cp. A Cp value of
zero corresponds to the ambient

pressure, with positive pressure indicated
by Cp > 0 and negative pressures
(vacuum) by Cp, < 0. From the pressure

distribution, we see that very little lift
(net upward-directed pressure force) 1s
generated at this condition.

(From S.R. Turns, Thermal-Fluid Sciences, Cambridge Univ. Press, 2006)
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CFD results for Re = 10° show that pressure forces dominate the lift and drag for an alrf0|| (NACA

0012) at a 5° angle of attack. Here wall shear stresses (right) are

less than surface pressures (left).
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(From S.R. Turns, Thermal-Fluid Sciences, Cambridge Univ. Press, 2006)



9.1.2 Characteristics of Flow Past an Object E

e For typical external flows the most important of ° o
parameters are

RezﬁI

the Reynolds number
y7;

_U
the Mach number Ma = %

the Froude number, for flow with a free surface

=

e Flows with Re>100 are dominated by inertia effects, whereas
flows with Re<1 are dominated by viscous effects.



Flow past a flat plate (streamlined body)

Viscous effects
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Character of the steady, viscous flow past
a flat plate parallel to the upstream
velocity: (a) low Reynolds number flow, (b)
moderate Reynolds number flow, (c) large
Reynolds number flow.
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Steady flow past a circular cylinder (blunt body)| 22°°,
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e The velocity gradients /\
within the boundary A
layer and wake regions . — N\
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those in the remainder L
Of the ﬂOW ﬂUId Viscosity not ¥ - i \:ff;f;c;?:
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9.2 Boundary Layer Characteristics
9.2.1 Boundary Layer Structure and Thickness on a Flat Plate
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Figure 9.7

Distortion of a fluid particle as it flows within the boundary layer.

e Boundary layer thickness, o
o =y where u=0.99U

X




Boundary Layer Structure and Thickness on a Flat Plate

0

X Transition occurs at

Laminar

Turbulent
Re _ B 2x10° ~3x10°

XCr /L[
depending on surface roughness and

amount of turbulence in upstream flow

Figure 9.9

Typical characteristics of boundary layer thickness and wall
shear stress for laminar and turbulent boundary layers.

V9.3 Laminar boundary layer

V9.4 Laminar/turbulent transition




Boundary layer displacement thickness

o Or O
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Boundary layer thickness: (a) standard boundary layer thickness, (b) boundary layer

displacement thickness.



Boundary layer displacement thickness

e Represents the amount that the thickness of the
body must be increased so that the fictitious uniform

Inviscid flow has the same mass flow rate properties

as the actual viscous flow.
e It represents the outward displacement of the

streamlines caused by the viscous effects on the

plate. | =0
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EX 9.3 Determine the velocity U=U(x) of the air within the duct

but outside of the boundary layer with §" = 0.004(x)*2



[
Boundary layer momentum thickness E

e Boundary layer momentum thickness &

jpu (U —u)dAzpbju(u —u)dy = pbU 20
0

9:]%(1-5)@ (9.4)

0



9.2.2 Prandtl/Blasius Boundary Layer Solution

e The Navier-Stokes equations are too complicated that
no analytical solution is available. However, for large

Re, simplified boundary layer equations can be

derived.

e 2-D Navier-Stokes Equations

ou ou  1ép (62u 82u]
U—+v—=———+v + |

oX oy  pox ox>  oy°

N oV 1 0op o’V oV
U—+V—=-——"+V| —+—

oX oy Yoo, ox~ oy J
8_u_|_@ = O

» Elliptic equation

(9.5)

(9.6)



Boundary layer assumption .

e The boundary layer assumption is based on the fact se
that the boundary layer is thin. o o
O <<X sothat v<<u and (/}i<<i
X
Thus the equations become,
u L ov_
ox oy | | (9.8)
, parabolic equation
u 5_u + Vﬁ_u — _i g + V@_u Detailed derivation is given in
X oy ox oy’ Cengel & Cimbala, Fluid (9.9)
Mechanics, 2006, pp. 516-519.

e Physically, the flow is parallel to the plate and any fluid is
convected downstream much more quickly than it is diffused
across the streamlines.

e For boundary layer flow over a flat plate the pressure is
constant. The flow represents a balance between viscous
and inertial effects, with pressure playing no role.
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Similarity variables 553
Define the dimensionless similarity variable ~
o
U % y oo
77 - (—j y =
VX o)

and stream function

w =(vxU )% f(7) wheref () is an unknown function
Thus

7
i = aa‘y” (UY (s )(%j _Uf (1)

oy (vU %
V=— = f’—f where =
X (4xj (7 /77

Then the parabolic equation (9.9) becomes

2f"+ ff"=0 (9143.)
with the boundary conditions

f(0)=1'(0)=0 at =0, f'(0) >1 as n > o (9.14b)




Blasius solutions

Ve e
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HW: Derive (9.14&9.18) and
solve using Matlab to get
Table 9.1
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B TABLE 9.1
Laminar Flow along a Flat Plate
(the Blasius Solution)
n =yWU/vx)'?  f'(n) =u/U n
0 0 3.6 0.9233
04 0.1328 4.0 0.9555
0.8 0.2647 4.4 0.9759
1.2 0.3938 4.8 0.9878
1.6 0.5168 5.0 0.9916
2.0 0.6298 5.2 0.9943
2.4 0.7290 5.6 0.9975
2.8 0.8115 6.0 0.9990
3.2 0.8761 ® 1.0000




Blasius solution
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Figure 9.10

55 = 35,

5, = 25,
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Blasius boundary layer profile: (a) boundary layer profile in dimensionless form using
the similarity variable 5. (b) similar boundary layer profiles at different locations along

the flat plate.



o
Blasius solution E

* o0
displacement thickness: from (9.3) — o :l':fl o o
X
X (9.16)
momentum thickness: from (9.4) — Q:0'664
X Re
boundary layer Shear stress:
ro=u _oa3uk 2L
oy|,_ X
y=0

Note: For fully developed pipe flow shear stress, 7, ccU (why?)



9.2.3 Momentum-Integral Boundary Layer EE
o

Equation for a Flat Plate

e One of the important aspects of boundary layer theory| o e
IS the determination of the drag caused by shear forces

on a body.
e Consider a uniform flow past a flat plate

— —— Control
surface

— - -
|| h _——" —G\Boundary layer edge i I u
T e e s e — v e
| N\ | X
(1) Nz () (2)
Figure 9.11

Control volume used in the derivation of the momentum integral equation for boundary

layer flow.



. X X )
x-component of momentum equatlon: ::0
> F, =p[uindA+ p [ uVindA y
M) 2 re—
> F=-D=-[ 7,dA=—b [ 7,dx or T—>
plate plate O (—-
o
-D=p[U(-U)dA+p [ UdA — D:puzbh—pbjuzdyl 4
1) (2) 0 7 u
S S S U—Ll
Since Uh = j udy, pU2%bh = pbU j udyzpbj Uudy y
0 0 0
o o o o “V
D = pU *bh— pb[u*du = pb[Uudy — pb [ u’dy = pb|u(U —u)dy L
0 0 0 0
y dD do
D= pbU2[La-Lydy= pbU?9, and == ppu2Z
£ gu( g V=r a7 dx —
u - U

The increase in drag per length of the plate occurs at the expense of an
Increase of the momentum boundary layer thickness, which represents
a decrease in the momentum of the fluid.

"+ dD =z, bdx —> L br, ..z,=pU° a0 — momentum integral equation by von Karman

dx dx



Momentum integral equation :
o

T :pUZd—g — momentum integral equation
! dx

e If we know the velocity distributions, we can obtain
drag or shear stress.

e The accuracy of these results depends on how closely
the shape of the assumed velocity profile approximates
the actual profile.

Example 9.4
u=U

u:%}/ 0<y<s u=U y>4 %

5 =

do |

. 2

z-w_pU & / i

U |

Ty = /Jg O%: UyIS I




Na)
Il

(1—5] dy = f%(l—%) dy

0

C|r:

1

¢
6

O, O3

1 2 3
(l—gjdyﬁl(y—yz)dy:a(yz—yc_;]o _

2
gl _PUTRG s B

Q<

%) 6 dx pU
2
5_:6_'ux — 52 :12_'UX
2
HX : : ) H
or 0 =346 |— < compare with Blasius solution —=5 |—
X PUX

o _ 346 /L

X PUX

6= —0576 | 4%
6 oU

7, = 240 _ 280072 |PH o 7,=033207%2 |PX
dx X X




B TABLE 9.2

Flat Plate Momentum Integral Results for Various Assumed
Laminar Flow Velocity Profiles

Profile Character o6Re!?/x cRe)/? CpRe}/?
a. Blasius solution 5.00 0.664 1.328
b. Linear

u/U = v/6 3.46 0.578 1.156
¢. Parabolic

u/U = 2y/6 — (v/5)* 5.48 0.730 1.460
d. Cubic

u/U = 3(v/8)/2 — (_\'/8)3/2 4.64 0.646 1.292
e. Sine wave

u/U = sin[7(v/8)/2] 4.79 0.655 1.310

Figure 9.12

Typical approximate boundary layer
profiles used in the momentum
integral equation.
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: : _ 000
Momentum integral equation for general profile of u/U | 899
Let izg(Y) for 0<Y <1 Y1 for Y >1 , Where Y - = .
U U o) 4
B.C.. g(0)=0,g(@)=1 .o:
D = pbU j% 1——)dy pbuzéj g(Y)[L—g(Y)]dY =pbU25C,
0
’Z’W:ﬂa_u 'LIU dg _£C2
., o dYf, & 1
we can obtain that C :IQ(Y)[l—g(Y)]dY
0
2C,/C
é:% (Blasius solution: o R? ) _ dg
X X = —
eX ex 2 dY Yo
5 \/ 2
«/ZCC
=,/2C,C, / (Blasius solution: c, 0664)
2pu2 '\,R X
o9 gee
b|z,dx
D " 8C,C : : :
Cor =7 = T =Y 2 where Re, _pot (Blasius solution: C,, =%)
> U %b¢ > pU%r  VRE H Re,



o
0.2.4 Transition from Laminar to Turbulent Flow E

e The analytical results are restricted to laminar o o
boundary layer along a flat plate with zero pressure
gradient.

e Transition to turbulent boundary layer occurs at

0

Re, ., =2x10° [J 3x10°

0
@

Example 9.5 Boundary layer

o]
b4

transition

Laminar Turbulent

Figure 9.9 \
Typical characteristics of boundary layer

thickness and wall shear stress for laminar
and turbulent boundary layers.

|
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Figure 9.13 (p. 483)

Turbulent spots and the transition from laminar
to turbulent boundary layer flow on a flat plate.
Flow from left to right. (Photograph courtesy of B.
Cantwell, Stanford University.

V9.5 Transition on flat plate
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Figure 9.14 (p. 484)

Typical boundary layer profiles on a
flat plate for laminar, transitional, and

turbulent flow (Ref. 1).



9.2.5 Turbulent Boundary Layer Flow s

The structure of turbulent boundary layer
flow is very complex, random, and irregular,
with significant cross-stream mixing.

Empirical power-law velocity profile is a
reasonable approximation.

Example 9.6 L
To begin with the momentum integral equaion:
dH 0.8
TW = pU 2 _— //
dx 1 a e )l ,
! Y==Y<I1 Pl ()7
Assume 1:(%) _y7 ' Ts Lo bm[ffem\’g-
u=U)Y >1 | e
> Laminar . /
and the experimentally determined formula: 0.2 7
| 24

1.0

%
r,, =0.02250U° (ﬁj (1)



dé
r, = pui=—= S
dx o0
U u tu u ; 7 ° o
9:]—(1——jdy=5j—(1——jdv =5IY%(1—Y%)dY:—5 2) »
0U U 0U U S 12 o :

where ¢ is still unknown.
To determine o, we combine Eg. 1 with Eq. 2 to get the ODE:

o7 ,ds £
00225002 2| =2 0222 or 5%5:0.231(1) dx
U (U&) 7279 0 U

with BC: 6 =0 at x=0, we obtain

%
5:0.370(9 x5, or 220379

5 = I(l—:j)dy _ 5@(1—3 dy = 5@(1—\(%)(1\( =§= 0.0463(6j% i

%
0=2 0036 L] x5 9<s5 <s
72 U



r, =0.0225pU° Y

U0.37(vIU)5 x5

f / %
D, = [bz,dx =b0.0288U % (&j dx = 0.036,pU>
0 0

D; 0072

Cor = =
;pu ZA Reg%

7

L
o
2
_ 0.0288pU .
Rex%

A
Re,

, A=Dbt

Note: The above results are valid for smooth flat plates with

5x10°<Re, < 10’

Turbulent B.L.: 6 X%,z'w 0 x /%
Laminar B.L.: o[ X%,z'w 0 x72

o

|
|
Re\.

Aer

Laminar Turbulent

N

¥

¥



CDf

Friction drag coefficient for a flat plate
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Figure 9.15

10°

a
e Although Fig. 9.15 is similar
with Moody diagram (pipe
flow) of Fig. 8.23, the
mechanisms are quite

different.

For fully developed pipe flow,
fluid inertia remains constant
and the flow is balanced
between pressure forces and
viscous forces.

For flat plate boundary layer
flow, pressure remains
constant and the flow is
balanced between inertia
effects and viscous forces.

Friction drag coefficient for a flat plate parallel to the upstream flow.



e00
.. : 0000
Empirical equations for Cpy; eeco
00000
eooe
m TABLE 9.3
Empirical Equations for the Flat Plate Drag Coefficient (Ref. 1)
Equation Flow Conditions
Cpr = 1.328/(Re,)™” Laminar flow
Cpr = 0.455/(log Re)*>* — 1700/Re, Transitional with Re,.,, = 5 X 10°
Cpr = 0.455/(log Re)*>* Turbulent, smooth plate
Cpr = [1.89 — 1.62 log(e/€)] > Completely turbulent

Example 9.7



0.2.6 Effects of Pressure Gradient

Inviscid flow over a cylinder
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180



Viscous flow over a cylinder

e Viscous flow

Fig. 22. Water, velocity of motion 2 cm/s, cylinder diameter 70 mm, photographed two
seconds after the start of motion, Re = 1.2 x 10%, hydrogen bubble method.
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o0
Viscous flow over cylinder: velocity-pressure <
o0

e Separated flow

e No matter how
small the viscosity,
provided it is not
zero, there will be a
boundary layer that
separates from the
surface, giving a
drag that is, for the
most part,
iIndependent of the

value of (/.
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flow

Locations indicated in
Figs. 9.17a and 9.18
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9.2.7 Momentum-Integral Boundary Layer oo
Equation with Nonzero Pressure Gradient - se
o0
e Outside the boundary layer e e
2
p+’0U2fs — constant
dp du .
dX o IOUfs dX (934)

e Momentum integral boundary layer equation

d . dU déo
rW:—p&(Ufszé’)an&Ufs dxf < (forU =C, rwzpuza) (9.35)

e This equation represents a balance between viscous forces
(z,), pressure forces( dp _ dUs ), and the fluid

momentum( g). dx " dx

e EQ. 9.35 can be used to provide information about the
boundary layer thickness, wall shear stress, etc,




Derivation of equation (9.35) oo
oo
M Yo () .
oX oy o.:
WM Ny Lo
X oy OXx poy
(b)-(u-U)(a)
l@f_i 2 _ 8_U i _
_;E_ax(uu u)+(U u) ax+6y(vu vu)
£ 10 o ¢ ouU ¢ ¢ 0 voay=he
T
l_;a_ydyzglu(u—u)dy+§£(U—U)dy+W
107 o ¢ 5
'([_;Edy_—xou(u—u)dy+—X£(U—U)dy
r 0 oU
;_&gu(U—u)der&_!(U—u)dy
Ol 2fuf, u), oU ¢, u
Sl sofesh
8 2 *a_U
_&(U 9)+U5 >~ (9.35)



9.3 Drag

e Any object moving through a fluid will
experience a drag D -- a net force In the
direction of flow due to pressure (pressure
drag) and shear stress (friction drag) on the
surface of the object.

Drag coefficient:

D
C. = = @ (shape, Re, Ma, Fr, /7

These are determined experimentally, and very
few can be obtained analytically.



9.3.1 Friction Drag 5

e Drag due to the shear stress 7,, , on the object. o o

e For large Re, the friction drag is generally smaller
than pressure drag.

e However, for highly streamlined bodies or for low
Reynolds number flow, most of the drag may be

due to friction drag.
y A

e Drag on a plate of width b and length |
- d

where C. Is the friction drag coefficient. &

D, = %pU b/C,,




Friction Drag

For laminar flow, C; Is independent of %

For turbulent flow, C; Is function of %

C,; along the surface of a curved body Is
quite difficult to obtain

Cpy
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Example 9.8 Friction drag coeff. for a cylinder



9.3.2 Pressure Drag 5

e Drag due to pressure on the object. © o

e Pressure drag — also called form drag because of its
strong dependency on the shape or form of the object.

D, :j pcosOdA C, = f_ Po . hressure coefficient
Pl

D, j pcos@dA_ ijcosé’dA

Cy, = 5

=1 1
TOUZA T pU2A
2 ¥ o PV

p,: reference pressure



Pressure drag--Large Reynolds number

For large Reynolds number, (inertial effect] viscous effect)

P— Py o< %pU * (dynamic pressure)

D, :j pcosddA C = p—zpo . pressure coefficient

pU“ /2
o _ D, :jpcosé’dA:ijcosedA
T looa Lo .
27 2

Therefore, C Is independent of Reynolds number,

Cp, is also independent of Reynolds number (Re [ 1)




o0
L X
Pressure drag--low Reynolds number oo
For very small Reynolds number (inertial effect] viscous effect) °
Ipoc yg (viscous stress) ﬂg
| D, | H
< 0 Cop 0 5 0——0-5r=1
’Z'W o IL[I— EIOU 2A EIOU 2 ,OU e

Comparisons:
For laminar pipe flow f [ 1

Re
For large Reynolds number f [J constant (pipe flow)

Example 9.9 Pressure drag coeff. for a cylinder



Viscosity Dependence

Inviscid, Viscous flows over object

For 1 =0, the pressure drag on any shaped object (symmett

or not) in a steady flow would be zero.
For 1 # 0, the net pressure drag

may be non-zero because of

boundary layer separation.

> 4; Boundary J NUESE,

v
B

/, g |a = .
5

|

= Boundary layer E
| separation
location

Boundary layer
fluid has kinetic
energy deficit

2.0

1.0

0.0
(=] e
D
I Q
o [—IN
g =0
U&-
=20
-3.0

Inviscid
theory

c,=1-4sn o ,7

/
/
/




9.3.3 Drag Coefficient Data and
Examples

C, :¢(shape, Re, Ma, Fr, %)

Shape Dependence

T _,_/-\,/"‘)f"--..:)/) - /—E’__‘;\_.'{_—;;-D—:\.._-_i
Vp—==0 )~ b’”\v//_“ —

Diameter = D

(a) (b)

Figure 9.20
Two objects of considerably different size that have the same drag force:
(a) circular cylinder C, = 1.2; (b) streamlined strut C, = 0.12.
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Shape Dependence 0o0
3
2.5 o
o
Flat plate o
normal to flow

Re = 22 =105

b = length

Flat plate
parallel to flow

Figure 9.19

Drag coefficient for an ellipse with the characteristic area either the frontal area, A = bD,
or the planform area, A = be¢ (Ref. 5).



Reynolds Number Dependence

Low Reynolds number, Re<1
viscous force ~ pressure force

D=f(U,I, )
From dimensional analysis

D=CulU [=C(xU/1)-17]

D  2Culu 2C

CD:lpU2|2
2

B TABLE 9.4

Low Reynolds Number Drag Coefficients (Ref. 7) (Re = pUD/u, A = wD?*/4)

Cp = G/(pUA/2)

pU2|2 o

’ Re:&I
Re Y7

Object (forRe = 1) Object Cp
a. Circular disk normal 20.4/Re c. Sphere 24.0/Re
to flow
T I
U ]l) U lf
b. Circular disk parallel 13.6/Re d. Hemisphere 22.2/Re
to flow j
U — O U @ D

R

Note: For Re<1,
streamlining
Increases the drag
due to an Increase
In the area on
which shear force
act.
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Ex 9.10: particle in the water dragged up by upward eoe
motion V9.7 Skydiving practice ® o
D=0.1mm, SG=23, todetermineU -
W =D+F, °°
T /A
WzysandVZSG7HzogD3’ F :7/H20v:7/HZOED3 ’ -
24
C,=— (For Re<l
1 T 1 V4 24
D=— U?=D*C, == U= D* =3zu, ;UD
5 Ph,0 4 D= Ph,0 4 Pr.0UD / to Hu,0 1
U
T T
536G 0 5 D° = 3ty QUD + 74 o B D’ -
(0.10 mm, 6.32 x 107 m/s)
7/ :pg 0.006
) 0.005
U — (SGszo —PHzo)gD _6.32x10°° ry ‘E 0.004
18,Ll S = 0.003
For15.6°C, p, o =999 kyg, Mo =1.12x10°° Nty ) ZZZ?
m m i

0 0.02 0.04 0.06 0.08 0.1

Re=2"" _0564 (Re<1) p.mm
Y7,



Moderate Reynolds Number
Cp of cylinder and sphere

Re<10®° C,0Re"* [ReT,C, { (not D)]
10° < Re <10° C, [J constant

400

20

100

10

o 2
2
s L e e - ik X

T~ == ~“\\ o
0.6 \ Rl
0.4 14

Smooth sphere v

0.2

0.1
0.0? \_/

10° 10! 10? 10° 10* 10°

<9



Flow over cylinder at various Reynolds
number

-

No separation

>

Steady separation bubble

(B)
(4)

Re <1, no separation  Re =10, steady separation bubble

~ N>

Oscillating Karman vortex street wake

(C) V9.8 Karman vortex street

Re ~100, vortex shedding starts at Re ~ 47




Flow over cylinder at various Reynolds number

Laminar boundary layer,
wide turbulent wake

(D)

Re ~ 5x10*

55, Instantaneous flow past a sphere at R=15,000. Dye
in water shows a laminar boundary layer separating ahead
of the equator and remaining laminar for almost one

radius. It then becomes unstable and quickly turns tur-
bulent. ONERA photograph, Werlé 1980

Turbulent boundary layer,
narrow turbulent wake

(E)
Re ~ 4 x10°

57. Instantaneous flow past a sphere at R=30,000
with a trip wire. A classical experiment of Prandtl and
Wieselsberger is repeated here, using air bubbles in water.
A wire hoop ahead of the equator trips the boundary
layer. It becomes turbulent, so that it separates farther

from M. Van Dyke, An
Album of Fluid Motion

rearward than if it were laminar (opposite page). The drag
is thereby dramatically reduced, in a way that occurs
naturally on a smooth sphere only at a Reynolds number
ten times as great. ONERA photograph, Werlé 1980



Laminar and Turbulent Boundary Layer
Separation o

156. Comparison of laminar and turbulent boundary photograph remains attached; similar behavior is shown - -
layers. The laminar boundary layer in the upper photo- below for a sharp corner. (Cf. figures 55-58 for a sphere.) from M . Van Dyke’ An AI bu m Of F I ul d M Otl On
graph separates from the crest of a convex surface (cf. Titanium tetrachloride is painted on the forepart of the

figure 38), whereas the turbulent layer in the second model in a wind tunnel. Head 1982



Drag of streamlined and blunt bodies
Drag coefficients

The different relations of C, with Re for objects with var]

streamlining are illustrated in Fig. 9.22.

OU§':

For streamlined bodies, CDT when the boundary layer becomes turbulent.
For blunt objects, CDL when the boundary layer becomes turbulent.

Note: In a portion of Flat plte

the range 10°<Re<106, - Circl
the actual drag (not | e
just C,) decreases with

]
. . Cp _
INcreasing speed. 01 ¢\/‘ QoTsp
Airfoil
\/\ 0.18 D
D—b—
_ _ _ 0.01 . E>¢
V9.9 Oscillating sign Cp= 2 —_
ij bD LD_,‘
V9.10 Flow past a flat plate b = length
104 10° 10° 107

V9.11 Flow past an ellipse
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Example 9.11 Terminal velocity of a falling object E:o
W =D+F; -
Wzyicev_’FBzyairV_ °°
1 T
EpairUZZchD =W _FB
7/ice D 7/air W D |:B
1 T
Zp. U?ZDC, =W =y_W
2/0a|r 4 D ?/|ce
b

U = ﬁpice gD

3 pair CD

*\ Updraft

i

Storm

50,000 1t movement_’h
Rain—’ il /Ground




Compressibility Effects

When the compressibility effects become important

C, =4(Re, Ma)

Notes: 1. Compressibility effect is negligible for Ma<0.5.

PO - Y ——

b = length

1.0

1.2

% 10

0.8

0.6

0.4

0.2

2. Cy Increases dramatically near Ma=1, due to
the existence of shock wave.
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Surface Roughness Effects 3
e Surface roughness influences drag when the boundary <G
layer Is turbulent, because it protrudes through the ° o

laminar sublayer and alters the wall shear stress.

e In addition, surface roughness can alter the transitional
critical Re and change the net drag.

In general,

Streamlines bodies: % T>c, 1T

Blunt bodies: % T— C, 1 constant (pressure drag)

until transition to turbulence occurs and the wake region becomes
considerably narrower so that the pressure drag drops. (Fig. 9.25)



000
Surface Roughness =
o
[
A well-hit golf ball has Re of O(10°), and the dimpled golf ball e
has a critical Reynolds number 4 x10* — dimples reduce C, °°
Table tennis Reynolds number is less than 4x10* — no need of dimples
Example 9.12 Effect of Surface Roughness for golf balll
and table tennis ball
0.4 Vo \ f——— T T l
it \ || \-/",'::-;:;:"
0.3 ‘\\ \ .J"T // // CD,rough _ 0.25 05
0.2 -.._E_;(_{_..7\/——- / CD,smooth 05
%:1'25X10_2 ‘ / £ =0 (smooth)
0.1 £=5><1o-3/ \ / 1
’ %—15><10-3)J
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Froude Number Effects (flows with free 0ocs
000
surface) eoee
. . [ X
When the free surface is present, the wave-making effects ° o
becomes important, so that
C, =¢(Re, Fr)
?}II ith bow b Ib-—:}-_:-
0.0010 < =
-;_&H Il with bow bulb N
| yd Figure 9.26 (p. 507)
e S Typical drag coefficient
data as a function of
Froude number and hull
Desigh speed, Fr = 0.267 characteristics for that
0 '/ portion of the drag due to

0.3 0.4 .
the generation of waves.

-
T
Il
.\|In.



Composite body drag

e Approximate drag calculations for a complex body by
treating it as composite collection of its various parts.

e.g., drag on an airplane or an automobile.

e The contributions of the drag due to various portions of
car (i.e., front end, windshield, roof, rear end, etc.) have
been determined. As a result it is possible to predict the
aerodynamic drag on cars of a wide variety ouf body
styles (Fig. 9.27).

V9.14 Automobile
streamlining

0
1920 1930 1940 1950 1960 1970 1980 1990 2000
Year

Example 9.13 Drag on a composite body

2010



9.4 Lift (L) T

0.4.1 Surface Pressure Distribution 2o
e Lift -- a force that is normal to the free stream. ¢ @

For aircraft, L T
For car, L { for better traction and cornering ability

C = - , C, =¢(shape, Re, Ma, Fr, ?)

1 .
2 UZA
, PV

Froude no. — free surface present
g Is relatively unimportant

Ma is important for Ma > 0.8

Re effect is not great

The most important parameter that affects the lift coefficient
IS the shape of the object.
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Surface Pressure Distribution 1T
e Common lift-generating devices (airfoils, fans,...) e
operate at large Re. Most of the lift comes from e e

the surface pressure distribution.

e For Re<l], viscous effect and pressure are equally
Important to the lift (for minute insects and the
swimming of microscopic organisms).

|:| Denotes p > p
[ ]Denotes p < pq

Figure 9.31 i

Pressure distribution
on the surface of an

automobile. 2 :
/T IY Y ¥y v Vv ¥

Example 9.14 Lift from pressure and shear distributions



Airfoil -4+
o0
e Since most airfoils are thin, the characteristic area A ~ °
IS the planform area in the definition of C,. For a oo

rectangular planform wing, A=bc, where c is the
chord length, b is the length of the airfoill.

e Typical C, ~O(1), i.e., L~(pU?/2)A,
and the wing loading L/A~(pU?)/2:  Wright Flyer: 1.5 Ib/ ft*

Boeing 747: 150 Ib/ ft°
e Aspect ratio .4 = b?/A (=b/c if c is constant)

Ingeneral, 4 T= C, T, C, ¥

Large A4 : long wing, soaring ¥ —

- i | S.y.rnmetrical
airplane, albatross, etc.
Small .4 : short wing, highly

maneuverable fighter, falcon o |
—f

Nonsymmetrical



Lift and drag coefficient data as a function of
angle of attack and aspect ratio

1.4

1.2

1.0

0.03

0.8

0.02

0 0.01

-10 0 10 20 0_10 0 10
o, degrees o, degrees

((J) (b)

Figure 9.33

Typical lift and drag coefficient data as a function of angle of attack and the aspect ratio
of the airfoil: (a) lift coefficient, (b) drag coefficient.

20



Ratio of lift to drag/Lift-drag polar

120

100

80

NACA 64(1) - 412 airfoil
Re =7 x 10°

Stall

-20

-40

/

-8

-4 0 4

o, degrees

(a)

8

0.010

Ca

(®) V9.15 Stalled airfoil

e Although viscous effects contributes little to the direct generation
of lift, viscosity-induced boundary layer separation can occur
when « is too large to lead to stall.



Lift of airfoil with flap P

3.0 _-° )
e Lift can be increased by i
adding fla allrd
g fap '
V9.17 Trailing edge flap 20 ;\/ a

VV9.18 Leading edge flap

Ex. 9.15

Figure 9.35

Typical lift and drag alterations
possible with the use of various 0 e e -
types of flap designs (Ref. 21). )

Oy No flaps Q
f Trailing edge Q—‘x

slotted flap

Double slotted Qb&'

Brmeg trailing edge flaps \

(Data not Leading 'G
shown)  edge flap 7

FIGURE 11-44

The lift and drag characteristics of an
airfoil during takeoff and landing can
be changed by changing the shape of
the airfoil by the use of movable flaps.
Photo by Yunus Cengel. (a) Flaps extended (takeoff) (b) Flaps retracted (cruising)

From Cengel and Cimbala, Fluid Mechanics, McGraw Hill, 2006
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9.4.2 Circulation oo
. . . o0 o
2-D symmetric air foil '..E
— Kutta condition—The flaw over
@ @=9 both the topside and the underside
e join up at the trailing edge and leave
@ the airfoil travelling parallel to one
. another.
M . . .
M %20 --by inviscid theory
-
()
H\ --adding circulation
M>“‘* %20 Note: The circulation needed is
T S a function of airfoil size and

(c)

—p—

shape and can be calculated

C @ % erom potential flow theory.
S T~ (Section 6.6.3)

"(a) + circulation = (¢)" L: -pur (Kutta—JOUI(OWSk| LaW)

(d)



Clockwise

circulation _
Counterclockwise

circulation
S
Starting
vortex
FIGURE 1142

Shortly after a sudden increase in
angle of attack, a counterclockwise
starting vortex 1s shed from the airfoul,
while clockwise circulation appears
around the airfoil, causing lift to

be generated.

From Cengel and Cimbala, Fluid Mechanics, McGraw Hill, 2006
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Circulation 5;5:
Flow past finite length wing :'.:

Figure 9.37 (p. 546 U
Fllogvtjpast a finitg::ength ) \ {_B

S~

wing: (a) the horseshoe
vortex system produced by
the bound vortex and the
trailing vortices: (b) the
leakage of air around the
wing tips produces the
trailing vortices.

~
X

rte

4\‘/‘-“'\
ﬂ/’
—
,/@ \Bound VO
. /

V4.6 Flow past a wing ~.

V9.19 Wing tip vortex (a)

Bound vortex

Low pressure
——————o
High pressure

Trailing vortex

(b)

e Vee-formation of bird -- 25 birds fly 70% farther than 1 bird
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Circulation ooc

00
Flow past a circular cylinder :.,
e A rotating cylinder in a stationary real fluid can produce’

circulation and generate a lift—Magnus effect
EXAMPLE 9.16 Lift on a rotating table tennis ball

S = stagnation point (highest pressure)
“(a) + (b) = ()

(a) (b) (c)
Figure 9.38

Inviscid flow past a circular cylinder: (a) uniform upstream flow without circulation. (b) free
vortex at the center of the cylinder, (c) combination of free vortex and uniform flow past a
circular cylinder giving nonsymmetric flow and a lift.
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